2.6.25

Harnessing Agentic AI: Transforming Business Operations with Autonomous Intelligence

 In the rapidly evolving landscape of artificial intelligence, a new paradigm known as agentic AI is emerging, poised to redefine how businesses operate. Unlike traditional AI tools that require explicit instructions, agentic AI systems possess the capability to autonomously plan, act, and adapt, making them invaluable assets in streamlining complex business processes.

From Assistants to Agents: A Fundamental Shift

Traditional AI assistants function reactively, awaiting user commands to perform specific tasks. In contrast, agentic AI operates proactively, understanding overarching goals and determining the optimal sequence of actions to achieve them. For instance, while an assistant might draft an email upon request, an agentic system could manage an entire recruitment process—from identifying the need for a new hire to onboarding the selected candidate—without continuous human intervention.

IBM's Vision for Agentic AI in Business

A recent report by the IBM Institute for Business Value highlights the transformative potential of agentic AI. By 2027, a significant majority of operations executives anticipate that these systems will autonomously manage functions across finance, human resources, procurement, customer service, and sales support. This shift promises to transition businesses from manual, step-by-step operations to dynamic, self-guided processes.

Key Capabilities of Agentic AI Systems

Agentic AI systems are distinguished by several core features:

  • Persistent Memory: They retain knowledge of past actions and outcomes, enabling continuous improvement in decision-making processes.

  • Multi-Tool Autonomy: These systems can independently determine when to utilize various tools or data sources, such as enterprise resource planning systems or language models, without predefined scripts.

  • Outcome-Oriented Focus: Rather than following rigid procedures, agentic AI prioritizes achieving specific key performance indicators, adapting its approach as necessary.

  • Continuous Learning: Through feedback loops, these systems refine their strategies, learning from exceptions and adjusting policies accordingly.

  • 24/7 Availability: Operating without the constraints of human work hours, agentic AI ensures uninterrupted business processes across global operations.

  • Human Oversight: While autonomous, these systems incorporate checkpoints for human review, ensuring compliance, ethical standards, and customer empathy are maintained.

Impact Across Business Functions

The integration of agentic AI is set to revolutionize various business domains:

  • Finance: Expect enhanced predictive financial planning, automated transaction execution with real-time data validation, and improved fraud detection capabilities. Forecast accuracy is projected to increase by 24%, with a significant reduction in days sales outstanding.

  • Human Resources: Agentic AI can streamline workforce planning, talent acquisition, and onboarding processes, leading to a 35% boost in employee productivity. It also facilitates personalized employee experiences and efficient HR self-service systems.

  • Order-to-Cash: From intelligent order processing to dynamic pricing strategies and real-time inventory management, agentic AI ensures a seamless order-to-cash cycle, enhancing customer satisfaction and operational efficiency.

Embracing the Future of Autonomous Business Operations

The advent of agentic AI signifies a monumental shift in business operations, offering unprecedented levels of efficiency, adaptability, and intelligence. As organizations navigate this transition, embracing agentic AI will be crucial in achieving sustained competitive advantage and operational excellence.

1.6.25

Token Monster: Revolutionizing AI Interactions with Multi-Model Intelligence

 In the evolving landscape of artificial intelligence, selecting the most suitable large language model (LLM) for a specific task can be daunting. Addressing this challenge, Token Monster emerges as a groundbreaking AI chatbot platform that automates the selection and integration of multiple LLMs to provide users with optimized responses tailored to their unique prompts.

Seamless Multi-Model Integration

Developed by Matt Shumer, co-founder and CEO of OthersideAI and the creator of Hyperwrite AI, Token Monster is designed to streamline user interactions with AI. Upon receiving a user's input, the platform employs meticulously crafted pre-prompts to analyze the request and determine the most effective combination of available LLMs and tools to address it. This dynamic routing ensures that each query is handled by the models best suited for the task, enhancing the quality and relevance of the output.

Diverse LLM Ecosystem

Token Monster currently integrates seven prominent LLMs, including:

  • Anthropic Claude 3.5 Sonnet

  • Anthropic Claude 3.5 Opus

  • OpenAI GPT-4.1

  • OpenAI GPT-4o

  • Perplexity AI PPLX (specialized in research)

  • OpenAI o3 (focused on reasoning tasks)

  • Google Gemini 2.5 Pro

By leveraging the strengths of each model, Token Monster can, for instance, utilize Claude for creative endeavors, o3 for complex reasoning, and PPLX for in-depth research, all within a single cohesive response.

Enhanced User Features

Beyond its core functionality, Token Monster offers a suite of features aimed at enriching the user experience:

  • File Upload Capability: Users can upload various file types, including Excel spreadsheets, PowerPoint presentations, and Word documents, allowing the AI to process and respond to content-specific queries.

  • Webpage Extraction: The platform can extract and analyze content from webpages, facilitating tasks that require information synthesis from online sources.

  • Persistent Conversations: Token Monster supports ongoing sessions, enabling users to maintain context across multiple interactions.

  • FAST Mode: For users seeking quick responses, the FAST mode automatically routes prompts to the most appropriate model without additional input.

Innovative Infrastructure

Central to Token Monster's operation is its integration with OpenRouter, a third-party service that serves as a gateway to multiple LLMs. This architecture allows the platform to access a diverse range of models without the need for individual integrations, ensuring scalability and flexibility.

Flexible Pricing Model

Token Monster adopts a usage-based pricing structure, charging users only for the tokens consumed via OpenRouter. This approach offers flexibility, catering to both casual users and those requiring extensive AI interactions.

Forward-Looking Developments

Looking ahead, the Token Monster team is exploring integrations with Model Context Protocol (MCP) servers. Such integrations would enable the platform to access and utilize a user's internal data and services, expanding its capabilities to tasks like managing customer support tickets or interfacing with business systems.

A Novel Leadership Experiment

In an unconventional move, Shumer has appointed Anthropic’s Claude model as the acting CEO of Token Monster, committing to follow the AI's decisions. This experiment aims to explore the potential of AI in executive decision-making roles.

Conclusion

Token Monster represents a significant advancement in AI chatbot technology, offering users an intelligent, automated solution for interacting with multiple LLMs. By simplifying the process of model selection and integration, it empowers users to harness the full potential of AI for a wide array of tasks, from creative writing to complex data analysis.

ElevenLabs Unveils Conversational AI 2.0: Elevating Voice Assistants with Natural Dialogue and Enterprise-Ready Features

 In a significant leap forward for voice technology, ElevenLabs has launched Conversational AI 2.0, a comprehensive upgrade to its platform designed to create more natural and intelligent voice assistants for enterprise applications. This release aims to enhance customer interactions in sectors like support, sales, and marketing by introducing features that closely mimic human conversation dynamics.

Natural Turn-Taking for Seamless Conversations

A standout feature of Conversational AI 2.0 is its advanced turn-taking model. This technology enables voice assistants to recognize conversational cues such as hesitations and filler words in real-time, allowing them to determine the appropriate moments to speak or listen. By eliminating awkward pauses and interruptions, the system fosters more fluid and human-like interactions, particularly beneficial in customer service scenarios where timing and responsiveness are crucial.

Multilingual Capabilities Without Manual Configuration

Addressing the needs of global enterprises, the new platform incorporates integrated language detection. This feature allows voice assistants to seamlessly engage in multilingual conversations, automatically identifying and responding in the user's language without requiring manual setup. Such capability ensures consistent and inclusive customer experiences across diverse linguistic backgrounds.

Enterprise-Grade Compliance and Security

Understanding the importance of data security and regulatory compliance, ElevenLabs has ensured that Conversational AI 2.0 meets enterprise standards. The platform is fully HIPAA-compliant, making it suitable for healthcare applications that demand stringent privacy protections. Additionally, it offers optional EU data residency to align with European data sovereignty requirements. These measures position the platform as a reliable choice for businesses operating in sensitive or regulated environments.

Enhanced Features for Diverse Applications

Beyond conversational improvements, Conversational AI 2.0 introduces several features to broaden its applicability:

  • Multi-Character Mode: Allows a single agent to switch between different personas, useful in training simulations, creative content development, and customer engagement strategies.

  • Batch Outbound Calling: Enables organizations to initiate multiple outbound calls simultaneously, streamlining processes like surveys, alerts, and personalized messaging campaigns.

These additions aim to increase operational efficiency and provide scalable solutions for various enterprise needs.

Positioning in a Competitive Landscape

The release of Conversational AI 2.0 comes shortly after competitor Hume introduced its own turn-based voice AI model, EVI 3. Despite emerging competition and the rise of open-source voice models, ElevenLabs' rapid development cycle and focus on naturalistic speech interactions demonstrate its commitment to leading in the voice AI domain.

Conclusion

With Conversational AI 2.0, ElevenLabs sets a new benchmark for voice assistant technology, combining natural dialogue capabilities with robust enterprise features. As businesses increasingly seek sophisticated AI solutions for customer engagement, this platform offers a compelling option that bridges the gap between human-like interaction and operational scalability.

QwenLong-L1: Alibaba's Breakthrough in Long-Context AI Reasoning

 In a significant advancement for artificial intelligence, Alibaba Group has unveiled QwenLong-L1, a new framework designed to enhance large language models' (LLMs) ability to process and reason over exceptionally long textual inputs. This development addresses a longstanding challenge in AI: enabling models to understand and analyze extensive documents such as detailed corporate filings, comprehensive financial statements, and complex legal contracts.

The Challenge of Long-Form Reasoning

While recent advancements in large reasoning models (LRMs), particularly through reinforcement learning (RL), have improved problem-solving capabilities, these improvements have predominantly been observed with shorter texts, typically around 4,000 tokens. Scaling reasoning abilities to longer contexts, such as 120,000 tokens, remains a significant hurdle. Long-form reasoning necessitates a robust understanding of the entire context and the capacity for multi-step analysis. This limitation has posed a barrier to practical applications requiring interaction with extensive external knowledge.

Introducing QwenLong-L1

QwenLong-L1 addresses this challenge through a structured, multi-stage reinforcement learning framework:

  1. Warm-up Supervised Fine-Tuning (SFT): The model undergoes initial training on examples of long-context reasoning, establishing a foundation for understanding context, generating logical reasoning chains, and extracting answers.

  2. Curriculum-Guided Phased RL: Training progresses through multiple phases with gradually increasing input lengths, allowing the model to adapt its reasoning strategies from shorter to longer contexts systematically.

  3. Difficulty-Aware Retrospective Sampling: Incorporating challenging examples from previous training phases ensures the model continues to learn from complex problems, encouraging exploration of diverse reasoning paths.

Additionally, QwenLong-L1 employs a hybrid reward mechanism combining rule-based verification with an "LLM-as-a-judge" approach, comparing the semantic similarity of generated answers with ground truth, allowing for more flexible and nuanced evaluations.

Performance and Implications

Evaluations using document question-answering benchmarks demonstrated QwenLong-L1's capabilities. Notably, the QwenLong-L1-32B model achieved performance comparable to leading models like Anthropic’s Claude-3.7 Sonnet Thinking and outperformed others such as OpenAI’s o3-mini. The model exhibited advanced reasoning behaviors, including grounding, subgoal setting, backtracking, and verification, essential for complex document analysis.

The introduction of QwenLong-L1 signifies a pivotal step in AI's ability to handle long-context reasoning tasks, opening avenues for applications in legal analysis, financial research, and beyond. By overcoming previous limitations, this framework enhances the practicality and reliability of AI in processing extensive and intricate documents.

31.5.25

DeepSeek R1-0528: China's Open-Source AI Model Challenges Industry Giants

 Chinese AI startup DeepSeek has unveiled its latest open-source model, R1-0528, marking a significant stride in the global AI landscape. This release underscores China's growing prowess in AI development, offering a model that rivals established giants in both performance and accessibility.

Enhanced Reasoning and Performance

R1-0528 showcases notable improvements in reasoning tasks, particularly in mathematics, programming, and general logic. Benchmark evaluations indicate that the model has achieved impressive scores, nearing the performance levels of leading models like OpenAI's o3 and Google's Gemini 2.5 Pro. Such advancements highlight DeepSeek's commitment to pushing the boundaries of AI capabilities.

Reduced Hallucination Rates

One of the standout features of R1-0528 is its reduced tendency to produce hallucinations—instances where AI models generate incorrect or nonsensical information. By addressing this common challenge, DeepSeek enhances the reliability and trustworthiness of its AI outputs, making it more suitable for real-world applications.

Open-Source Accessibility

Released under the permissive MIT License, R1-0528 allows developers and researchers worldwide to access, modify, and deploy the model without significant restrictions. This open-source approach fosters collaboration and accelerates innovation, enabling a broader community to contribute to and benefit from DeepSeek's advancements.

Considerations on Content Moderation

While R1-0528 offers numerous technical enhancements, it's essential to note observations regarding its content moderation. Tests suggest that the model may exhibit increased censorship, particularly concerning topics deemed sensitive by certain governing bodies. Users should be aware of these nuances when deploying the model in diverse contexts.

Conclusion

DeepSeek's R1-0528 represents a significant milestone in the evolution of open-source AI models. By delivering enhanced reasoning capabilities, reducing hallucinations, and maintaining accessibility through open-source licensing, DeepSeek positions itself as a formidable contender in the AI arena. As the global AI community continues to evolve, contributions like R1-0528 play a pivotal role in shaping the future of artificial intelligence.

30.5.25

Mistral Enters the AI Agent Arena with New Agents API

 The AI landscape is rapidly evolving, and the latest "status symbol" for billion-dollar AI companies isn't a fancy office or high-end swag, but a robust agents framework or, as Mistral AI has just unveiled, an Agents API. This new offering from the well-funded and innovative French AI startup signals a significant step towards empowering developers to build more capable, useful, and active problem-solving AI applications.

Mistral has been on a roll, recently releasing models like "Devstral," their latest coding-focused LLM. Their new Agents API aims to provide a dedicated, server-side solution for building and orchestrating AI agents, contrasting with local frameworks by being a cloud-pinged service. This approach is reminiscent of OpenAI's "requests API" but tailored for agentic workflows.

Key Features of the Mistral Agents API

Mistral's Agents API isn't trying to be a one-size-fits-all framework. Instead, it focuses on providing powerful tools and capabilities specifically for leveraging Mistral's models in agentic systems. Here are some of the standout features:

Persistent Memory Across Conversations: A significant advantage, this allows agents to maintain context and history over extended interactions, a common pain point in many existing agent frameworks where managing memory can be tedious.

Built-in Connectors (Tools): The API comes equipped with a suite of pre-built tools to enhance agent functionality:

Code Execution: Leveraging models like Devstral, agents can securely run Python code in a server-side sandbox, enabling data visualization, scientific computing, and more.

Web Search: Provides agents with access to up-to-date information from online sources, news outlets, and reputable databases.

Image Generation: Integrates with Black Forest Lab's FLUX models (including FLUX1.1 [pro] Ultra) to allow agents to create custom visuals for diverse applications, from educational aids to artistic images.

Document Library (Beta): Enables agents to access and leverage content from user-uploaded documents stored in Mistral Cloud, effectively providing built-in Retrieval-Augmented Generation (RAG) functionality.

MCP (Model Context Protocol) Tools: Supports function calling, allowing agents to interact with external services and data sources.

Agentic Orchestration Capabilities: The API facilitates complex workflows:

Handoffs: Allows different agents to collaborate as part of a larger workflow, with one agent calling another.

Sequential and Parallel Processing: Supports both step-by-step task execution and parallel subtask processing, similar to concepts seen in LangGraph or LlamaIndex, but managed through the API.

Structured Outputs: The API supports structured outputs, allowing developers to define data schemas (e.g., using Pydantic) for more reliable and predictable agent responses.

Illustrative Use Cases and Examples

Mistral has provided a "cookbook" with various examples demonstrating the Agents API's capabilities. These include:

GitHub Agent: A developer assistant powered by Devstral that can manage tasks like creating repositories, handling pull requests, and improving unit tests, using MCP tools for GitHub interaction.

Financial Analyst Agent: An agent designed to handle user queries about financial data, fetch stock prices, generate reports, and perform analysis using MCP servers and structured outputs.

Multi-Agent Earnings Call Analysis System (MAECAS): A more complex example showcasing an orchestration of multiple specialized agents (Financial, Strategic, Sentiment, Risk, Competitor, Temporal) to process PDF earnings call transcripts (using Mistral OCR), extract insights, and generate comprehensive reports or answer specific queries.

These examples highlight how the API can be used for tasks ranging from simple, chained LLM calls to sophisticated multi-agent systems involving pre-processing, parallel task execution, and synthesized outputs.

Differentiation and Implications

The Mistral Agents API positions itself as a cloud-based service rather than a local library like LangChain or LlamaIndex. This server-side approach, particularly with built-in connectors and orchestration, aims to simplify the development of enterprise-grade agentic platforms.


Key differentiators include:

API-centric approach: Focuses on providing endpoints for agentic capabilities.

Tight integration with Mistral models: Optimized for Mistral's own LLMs, including specialized ones like Devstral for coding and their OCR model.

Built-in, server-side tools: Reduces the need for developers to implement and manage these integrations themselves.

Persistent state management: Addresses a critical aspect of building robust conversational agents.

This offering is particularly interesting for organizations looking at on-premise deployments of AI models. Mistral, like other smaller, agile AI companies, has shown more openness to licensing proprietary models for such use cases. The Agents API provides a clear pathway for these on-prem users to build sophisticated agentic systems.

The Path Forward

Mistral's Agents API is a significant step in making AI more capable, useful, and an active problem-solver. It reflects a broader trend in the AI industry: moving beyond foundational models to building ecosystems and platforms that enable more complex and practical applications.


While still in its early stages, the API, with its focus on robust features like persistent memory, built-in tools, and orchestration, provides a compelling new option for developers looking to build the next generation of AI agents. As the tools and underlying models continue to improve, the potential for what can be achieved with such an API will only grow. Developers are encouraged to explore Mistral's documentation and cookbook to get started.

DeepSeek R1‑0528: The Open‑Source Challenger That Rivals GPT‑4o and Gemini 2.5 Pro

 Chinese startup DeepSeek has just released R1‑0528, a major update to its flagship reasoning model, positioning it as an affordable yet powerful open‑source alternative to OpenAI’s o3 and Google’s Gemini 2.5 Pro.

The new release, published on Hugging Face under the permissive MIT License, brings a host of enhancements to math, science, business, and coding reasoning—all while reinforcing its competitive edge.



🚀 What’s New in R1‑0528

  • Stronger Reasoning:
    On the AIME 2025 benchmark, accuracy surged from 70% to an impressive 87.5%, thanks to longer reasoning chains (average 23k tokens vs. 12k before). Code generation also jumped, with LiveCodeBench scores rising from 63.5% to 73.3% alongside doubling performance on the challenging “Humanity’s Last Exam.”

  • Developer-Friendly Features:
    R1‑0528 now supports JSON output and function calling, streamlining integration into developer pipelines and automation workflows.

  • New Model Variant:
    A distilled version—R1‑0528‑Qwen3‑8B—brings lightweight performance that's still on par with larger models in open benchmarks like AIME 2024.

🏆 Why This Matters

DeepSeek continues to challenge the perception that high performance requires closed-source models and massive budgets. R1‑0528 delivers competitive strength on par with expensive proprietary systems, but under an MIT license and at significantly lower cost—R1's API even cost just $0.14/1M tokens (peak) with local runtime options detailed on GitHub.

This open-access approach puts serious pressure on dominant U.S. models and fosters global collaboration—developers worldwide can use, modify, and deploy R1‑0528 freely.


🌍 Open-Source Renaissance in AI

Since its initial R1 model launch in January, DeepSeek has quickly become a key player in the global AI landscape. R1‑0528 maintains the open-source ethos and stakes its claim as a champion of community-driven innovation in areas where cost and licensing are bottlenecks.


🗣️ Community Buzz

Feedback from enthusiasts is bullish: voices from Reddit’s LocalLLaMA community noted that “DeepSeek is now almost on par with OpenAI’s o3 High model on LiveCodeBench! Huge win for opensource!”

Analysts also see this release as a strategic “Sputnik moment” that could disrupt AI dominance—similar to earlier 2025 reports on DeepSeek’s initial release.


✅ Final Verdict

DeepSeek R1‑0528 marks a significant milestone in open-source AI: powerful reasoning, developer utility, and community support—all while costing a fraction of proprietary counterparts. As a truly accessible yet competitive model, it nudges the AI ecosystem toward openness and transparency—without sacrificing performance.

29.5.25

Introducing s3: A Modular RAG Framework for Efficient Search Agent Training

 Researchers at the University of Illinois Urbana-Champaign have developed s3, an open-source framework designed to streamline the training of search agents within Retrieval-Augmented Generation (RAG) systems. By decoupling the retrieval and generation components, s3 allows for efficient training using minimal data, addressing challenges faced by enterprises in deploying AI applications.

Evolution of RAG Systems

The effectiveness of RAG systems largely depends on the quality of their retrieval mechanisms. The researchers categorize the evolution of RAG approaches into three phases:

  1. Classic RAG: Utilizes static retrieval methods with fixed queries, often resulting in a disconnect between retrieval quality and generation performance.

  2. Pre-RL-Zero: Introduces multi-turn interactions between query generation, retrieval, and reasoning, but lacks trainable components to optimize retrieval based on outcomes.

  3. RL-Zero: Employs reinforcement learning to train models as search agents, improving through feedback like answer correctness. However, these approaches often require fine-tuning the entire language model, which can be costly and limit compatibility with proprietary models.

The s3 Framework

s3 addresses these limitations by focusing solely on optimizing the retrieval component. It introduces a novel reward signal called Gain Beyond RAG (GBR), which measures the improvement in generation accuracy when using s3's retrieved documents compared to naive retrieval methods. This approach allows the generator model to remain untouched, facilitating integration with various off-the-shelf or proprietary large language models.

In evaluations across multiple question-answering benchmarks, s3 demonstrated strong performance using only 2.4k training examples, outperforming other methods that require significantly more data. Notably, s3 also showed the ability to generalize to domains it wasn't explicitly trained on, such as medical question-answering tasks.

Implications for Enterprises

For enterprises, s3 offers a practical solution to building efficient and adaptable search agents without the need for extensive data or computational resources. Its modular design ensures compatibility with existing language models and simplifies the deployment of AI-powered search applications.

Paper: "s3: You Don't Need That Much Data to Train a Search Agent via RL" – arXiv, May 20, 2025.

https://arxiv.org/abs/2505.14146

Mistral AI Launches Agents API to Simplify AI Agent Creation for Developers

 Mistral AI has unveiled its Agents API, a developer-centric platform designed to simplify the creation of autonomous AI agents. This launch represents a significant advancement in agentic AI, offering developers a structured and modular approach to building agents that can interact with external tools, data sources, and APIs.



Key Features of the Agents API

  1. Built-in Connectors:
    The Agents API provides out-of-the-box connectors, including:

    • Web Search: Enables agents to access up-to-date information from the web, enhancing their responses with current data.

    • Document Library: Allows agents to retrieve and utilize information from user-uploaded documents, supporting retrieval-augmented generation (RAG) tasks.

    • Code Execution: Facilitates the execution of code snippets, enabling agents to perform computations or run scripts as part of their workflow.

    • Image Generation: Empowers agents to create images based on textual prompts, expanding their multimodal capabilities.

  2. Model Context Protocol (MCP) Integration:
    The API supports MCP, an open standard that allows agents to seamlessly interact with external systems such as APIs, databases, and user data. This integration ensures that agents can access and process real-world context effectively.

  3. Persistent State Management:
    Agents built with the API can maintain state across multiple interactions, enabling more coherent and context-aware conversations.

  4. Agent Handoff Capability:
    The platform allows for the delegation of tasks between agents, facilitating complex workflows where different agents handle specific subtasks.

  5. Support for Multiple Models:
    Developers can leverage various Mistral models, including Mistral Medium and Mistral Large, to power their agents, depending on the complexity and requirements of the tasks.

Performance and Benchmarking

In evaluations using the SimpleQA benchmark, agents utilizing the web search connector demonstrated significant improvements in accuracy. For instance, Mistral Large achieved a score of 75% with web search enabled, compared to 23% without it. Similarly, Mistral Medium scored 82.32% with web search, up from 22.08% without. (Source)

Developer Resources and Accessibility

Mistral provides comprehensive documentation and SDKs to assist developers in building and deploying agents. The platform includes cookbooks and examples for various use cases, such as GitHub integration, financial analysis, and customer support. (Docs)

The Agents API is currently available to developers, with Mistral encouraging feedback to further refine and enhance the platform.

Implications for AI Development

The introduction of the Agents API by Mistral AI signifies a move toward more accessible and modular AI development. By providing a platform that simplifies the integration of AI agents into various applications, Mistral empowers developers to create sophisticated, context-aware agents without extensive overhead. This democratization of agentic AI has the potential to accelerate innovation across industries, from customer service to data analysis.

 In the rapidly evolving landscape of artificial intelligence, a new paradigm known as agentic AI is emerging, poised to redefine how busine...